NOTE: Every post ends with "END OF POST". If you don't see it then open the full post in a separate page!

Using std::unique_ptr (RAII) with malloc() and free()

This is a short post about using std::unique_ptr with malloc() and free(). Although, it can be used with other resource management functions too (files, sockets, etc.).

Often, when working with legacy C and C++ code, we see usages of malloc() and free(). Just like new and delete, explicit memory management should be hidden in the guts of libraries whenever possible and never be exposed to the casual programmer.

It would be great if the legacy code could be easily changed to use std::make_unique() to make it nice clean and safe at the same time. Unfortunately, std::make_unique() uses new and delete operators internally. So, if our legacy code uses some custom functions to allocate and deallocate memory then we may be forced to do more refactoring than we might have time for (e.g. to use new expressions instead of custom or malloc based allocators).

Luckily, we can still get the benefit of RAII by using std::unique_ptr by trading off some cleanliness.
But std::unique_ptr takes a deleter type. No problem, we have decltype() to the rescue!

#include <memory>

int main()
    auto Data =
        std::unique_ptr<double, decltype(free)*>{
            free };
    return 0;

The decltype(free) gives back a function type of “void (void*)” but we need a pointer to a function. So, we say “decltype(free)*” which gives us “void (*)(void*)”. Excellent!

A bit awkward, but it is still nice, since it does RAII (automatic free) and both the allocator (malloc()) and the deallocator (free()) is clearly visible to the reader.

With decltype() we don’t have to write our own deleter functor like in this example:

#include <memory>

struct MyDeleter
    void operator()(double *p) { free(p); }

int main()
    auto Data =
        std::unique_ptr<double, MyDeleter>{
            reinterpret_cast<double*>(malloc(sizeof(double) * 50)) };
    return 0;

Also, with decltype() we don’t have to spell out the type of the deleter like in this example:

#include <memory>

int main()
    auto Data =
        std::unique_ptr<double, void(*)(void*)>{
            reinterpret_cast<double*>(malloc(sizeof(double) * 50)),
            free };
    return 0;

So, with std::unique_ptr you can quickly hack RAII into legacy code. However, as a general guideline, prefer refactoring legacy code using modern C++.



Emulating in, out and inout function parameters – Part 2

Emulating in, out and inout function parameters in C++.

This is the continuation of Part 1 of this post.

In Part 1, we created classes to represent Input, Output and Input-Output parameters and arguments.
Here is an example how those classes can be used:

#include "param_inout.hpp"
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace param_inout;
using namespace std;
#define PRINT(arg) cout << __FUNCTION__ << ":" << __LINE__ << ": "<< arg << " " << endl

double func1(inp<int> p) {
    // p = 1; // Error: p is read-only.
    return p * 2.2;

void func2(outp<int> p) {
    // int a = p; // Error: p is write-only.
    p = 88;

void func3(inoutp<string> p) {
    auto t = string(p); // p is readable.
    p = "Hello ";       // p is writable.
    p = string(p) + t;  // p is readable and writable.

void func4(inp<string> pattern,
           inp<vector<string>> items,
           inoutp<string> message,
           outp<int> matchCount) {
    auto& ritems = items.arg();
    matchCount = count_if(begin(ritems), end(ritems),
        [&](const string& a) { return a.find(pattern) != string::npos; });
    message = "Done";

void func5(inp<int> p1, outp<int> p2, inoutp<string> p3) {
    // func1(p1); // Error! Good! inp::inp(const inp&) is private.

int main() {
    // auto a = func1(ina(2.2)); // Error: Cannot convert ina<double> to ina<int>
    // auto a = func1(2); // Error: inp::inp(const int&) is private.
    auto a0 = func1(ina(static_cast<int>(2.2)));   PRINT(a0);
    auto a1 = func1(ina(2));                       PRINT(a1);
    auto a2 = 0;                func2(outa(a2));   PRINT(a2);
    auto a3 = string{"world!"}; func3(inouta(a3)); PRINT(a3);

    auto a4 = vector<string>{"avocado", "apple", "plum", "apricot", "orange"};
    auto a5 = string{"Searching..."};
    auto a6 = 0;
    func4(ina(string{ "ap" }), ina(a4), inouta(a5), outa(a6));
    PRINT(a5);  PRINT(a6);

    func5(ina(5), outa(a6), inouta(a5));  PRINT(a5); PRINT(a6);

    return 0;

This example code produces the following output:

main:47: 4.4
main:48: 4.4
main:49: 88
main:50: Hello world!
func4:30: Searching...
main:56: Done
main:56: 2
main:58: Hello Done
main:58: 88

In the code example above, it is clear at the parameter declaration how each parameter is used by the function. Also, for declaration, we chose the convention to include a trailing “p” after the category. For example, outp signifies an Output Function Parameter. It says that it’s for output and it also says that it’s a parameter (i.e. not an argument).

At the call sites, we pass function arguments using ina (input), outa (output) and inouta (input and output). This way, we can clearly see that they are Function Arguments (not parameters); and how the function is going to use those arguments. No surprises.

It is also obvious how to construct function declarations ourselves. For example, the simple functions at the beginning of this post may be declared like this, regardless who does it:

void f(inoutp<string> s);
void g(inp<string> s);

void caller() {
  auto a1 = string{"hello"};

And our std::vector example will become this:

void f(inp<vector<string>> v);

It is clear what is happening both at the declaration and at the call site. Also, this convention is much easier and obvious to follow.


References about the complexity of function parameter declaration guidelines


Emulating in, out and inout function parameters – Part 1

Emulating in, out and inout function parameters in C++.

In C++, passing arguments to functions can be done in a variety of ways. If you are not careful, even thou your function works as intended, the way its parameters are declared can easily mislead the caller.

Consider the following simple examples:

void f(string *s);
void g(string &s);

void caller() {
  auto a1 = string{"hello"};

Is function f going to change s? Is it so that the writer meant “const char *” but the const qualifier is missing by mistake?
Same applies to function g. Also, when calling g, it is not apparent that it may change a1. It looks like it takes a1 by value.

These and similar issues can be avoided by laying down coding conventions about “how to name functions” and “how to declare function parameters” for your team members in your project. The problem with such guidelines is that it may be hard to follow. Even in simple cases they may not be obvious. For example, we may know that our compiler can copy std::vector by merely copying a pointer. So you automatically declare the input parameter like this:

void f(vector<string> v);

On the other hand, other people may not know this. In this case, they tend to declare the same kind of input parameter like this:

void f(const vector<string>& v);

Both of these are correct but it leads to inconsistency and confusion. Also, guidelines about “how to declare function parameters” can become quite complex considering when and how to use pointers, references, const qualifiers, pass-by-value, etc in function declarations.

99% of the time, we can categorize function parameters as

  • Input: Parameters that are only read by the function. They are not changed.
  • Output: Parameters that are only written by the function. The value of the corresponding argument that the caller passes in is not relevant to the function. These parameters are products of the function and the caller sees their new values when the function returns.
  • Input and output: Parameters that are both read and written by the function.

Some languages, like C#, provide standard tools for specifying these categories for function parameters. C++ does not provide standard tools for this. Fortunately, C++ is a very flexible language and we can roll our own tools to achieve this.

Here is one way to implement such a feature:

#pragma once
namespace param_inout {
    // Input
    template <typename T> class inp;
    template <typename T> inp<T> ina(const T&);
    template <typename T> inp<T> ina(const inp<T>&);
    template <typename T>
    class inp {
        inp(inp&& other) : m_arg{other.m_arg} { /* empty */ }
        operator const T&() const { return m_arg; }
        const T& arg() const { return m_arg; }
        inp(const inp&) = delete;
        inp(const T& arg) : m_arg{arg} { /* empty */ }
        friend inp<T> ina<T>(const T&);
        friend inp<T> ina<T>(const inp<T>& arg);
        const T& m_arg;
    template <typename T>
    inp<T> ina(const T& arg) { return inp<T>{arg}; }
    template <typename T>
    inp<T> ina(const inp<T>& param) { return inp<T>{param.m_arg}; }

    // Output
    template <typename T> class outp;
    template <typename T> outp<T> outa(T&);
    template <typename T> outp<T> outa(outp<T>&);
    template <typename T>
    class outp {
        outp(outp&& other) : m_arg{other.m_arg} { /* empty */ }
        outp& operator=(const T& otherArg) { m_arg = otherArg; return *this; }
        outp(const outp&) = delete;
        outp(T& arg) : m_arg{arg} { /* empty */ }
        friend outp<T> outa<T>(T&);
        friend outp<T> outa<T>(outp<T>&);
        T& m_arg;
    template <typename T>
    outp<T> outa(T& arg) { return outp<T>{arg}; }
    template <typename T>
    outp<T> outa(outp<T>& param) { return outp<T>{param.m_arg}; }

    // Input and output
    template <typename T> class inoutp;
    template <typename T> inoutp<T> inouta(T&);
    template <typename T> inoutp<T> inouta(inoutp<T>&);
    template <typename T>
    class inoutp {
        inoutp(inoutp&& other) : m_arg{other.m_arg} { /* empty */ }
        operator T&() { return m_arg; }
        T& arg() const { return m_arg; }
        inoutp& operator=(const T& otherArg) { m_arg = otherArg; return *this; }
        inoutp(const inoutp&) = delete;
        inoutp(T& arg) : m_arg{arg} { /* empty */ }
        friend inoutp<T> inouta<T>(T&);
        friend inoutp<T> inouta<T>(inoutp<T>&);
        T& m_arg;
    template <typename T>
    inoutp<T> inouta(T& arg) { return inoutp<T>{arg}; }
    template <typename T>
    inoutp<T> inouta(inoutp<T>& param) { return inoutp<T>{param.m_arg}; }

These simple classes wrap around references to the actual function arguments. Why?

  • For Output and Input-Output parameters, taking a reference is necessary since we want to write into the arguments and make those writes visible to the caller.
  • For Input parameters, we take a const reference. It is a reference because most of the time it is “efficient enough”. It is const because it is a reference and we want it to be read-only. If we want, we can specialize it for simple types, like char or int, to store a copy and not a reference. For the sake of consistency and simplicity, even if you choose to specialize it, it’s probably better to always treat inp<T> as a reference. That is, make a copy of its contents (inp<T>.arg()) if you want to save it somewhere after the function returns.

In Part 2 of this post, we look at how these classes can be used.
Continue to Part 2.